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We determine numerically the ground state of the two-dimensional fully polarized electron gas within the
Hartree-Fock approximation without imposing any particular symmetries on the solutions. At low electronic
densities, the Wigner crystal solution is stable, but for higher densities �rs less than �2.7� we obtain a ground
state of different symmetry: the charge density forms a triangular lattice with about 11% more sites than
electrons. We prove analytically that this conducting state with broken translational symmetry has lower energy
than the uniform Fermi-gas state in the high-density region giving rise to a metal to insulator transition.
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I. INTRODUCTION

The two-dimensional homogeneous electron gas is one of
the fundamental models in condensed-matter physics. De-
spite its simplicity—the system consists of electrons interact-
ing through a 1 /r potential to which a uniform positive back-
ground is added for charge neutrality—the phase diagram at
zero temperature is nontrivial.1–3 In general, it is given in
terms of the dimensionless parameter rs=1 /��naB

2 , where n
is the electronic density and aB=�2 / �me2� the Bohr radius
�see Sec. IV for notations and units�. At low density �large
rs�, the potential energy dominates over the kinetic energy
and the system forms a triangular lattice, the Wigner crystal
�WC�, whereas in the high-density region �rs→0� the kinetic
energy favors a uniform Fermi-gas �FG� phase1 �the simplest
state given as the determinant of the plane waves with wave
vector k of modulus smaller than kF�. The energy of the FG
is known analytically. Already Wigner4 argued that the un-
polarized FG is unstable even in the limit rs→0. Later,
Overhauser5 claimed the instability of the unpolarized WC
with respect to spin-density waves, even within the Hartree-
Fock approximation �HF�. It has further been conjectured
that the Coulomb potential prevents any first-order transition
between the WC and a FG.6 Despite these rather general
instability theorems, there are few quantitative calculations
of the true ground state of the electron gas within HF.7 A
previous HF study8 of the two- and three-dimensional elec-
tron gas compares the FG energy with the energy of various
states with imposed crystal symmetries. For the polarized
two-dimensional gas, they find lower energies for a crystal
for rs larger than 2. Only recently an unrestricted HF study of
the unpolarized three-dimensional electron gas was per-
formed which proposes a more complicated structure of a
ground state with spin-density waves in the high-density
region.9

Indeed, establishing the precise HF phase diagram of the
electron gas influences the correlation energy estimations,
since by definition the many-body correlation effects must be
evaluated with respect to the true HF ground state. Further,
even in more advanced techniques, the antisymmetry of the
wave functions is in general provided by a single Slater de-
terminant.

In the present study, we consider the fully polarized two-
dimensional electron gas, analytically and numerically. Sec-
tion II summarized our numerical results. At low densities,
rs�2.7, our simulations always lead to a WC. For higher
densities and large enough number of electrons, N, the solu-
tion is neither a FG nor a WC: the density modulation cor-
responds to a partially occupied crystal of different symme-
try compared to the WC phase. As the number of sites is
larger than N, we refer to this solution as a metallic phase.
Details of our numerical methods are given in Sec. III.

In Sec. IV we remind some definitions and notations par-
ticularly used in the following. Section V is devoted to de-
rive rigorous analytical upper bounds on the energy of the
metallic phase. These bounds are obtained in the limit rs
→0 where the calculation is simplified by the long-range
behavior of the interaction potential. In the conclusion, Sec.
VI, we briefly summarize the results of the paper and discuss
their relevance.

The HF solutions discussed in this paper within the HF
approximation open a perspective for the qualitative under-
standing of the experimental observed metal to insulator
transition10 and should be considered in studies beyond the
HF approximation. The possibility that the experimental
findings are driven by interaction effects—and not by
disorder—was recently addressed in Refs. 11 and 12 consid-
ering an extended Hubbard model.

II. NUMERICAL RESULTS

The N-body Hamiltonian, H=K+V, contains the kinetic
energy K and the 1 /r-periodic Coulomb potential V where a
uniform positive charge background is subtracted. Within the
HF approximation, the search of the true ground state of the
quantum many-body system is reduced to the simpler prob-
lem of finding the lowest energy states in the subset of the
Slater determinants �see Eq. �10��. Let �=�1∧ ¯ ∧�N be
the Slater determinant associated with the single-particle
states ��i� and E��1 ,�2 , . . . ,�N� the corresponding energy
expectation value.

By a kind of descent method described in Sec. III, we
numerically study systems with up to 500 electrons at den-
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sities corresponding to rs=1 up to rs=30. Since we expect
the electrons to crystallize on a triangular lattice at low den-
sities, we choose periodic conditions compatible with this
geometry. Thus, the unit cell of the periodized system is
given in terms of two vectors �L1 ,L2� of length L and with
an angle of 60° between both; the volume of the unit cell is
�=L2�3 /2. We have restricted our study to system sizes
which are compatible both with the triangular lattice and
with a closed-shell occupation in k space. Any triangular
crystal with unit-cell vectors �e1 ,e2� is compatible with the
boundary conditions if it satisfies L1= le1+me2 and L2=
−me1+ �l+m�e2, where �l ,m� are two non-negative integers.
The number of sites of the lattice is given by Nc
=det�L1 ,L2� /det�e1 ,e2�= l2+m2+ lm.

In Fig. 1, we report the energies of the obtained HF
ground state E��rs�, extrapolated to the thermodynamic limit,
as a function of rs. In the low-density region, for rs	3, we
obtain good agreement with the results of Trail et al.,8 which
imposed a ground-state build as a complete band of Bloch
wave functions of the triangular WC lattice. But for smaller

rs we find lower energies which remain also below the FG
energy down to rs=1.

Figure 2�a� shows the typical charge density for rs	3. In
this case we have a triangular lattice with exactly N sites.
Figure 2�c� shows the Fourier transform of the charge den-
sity. The support of the Fourier transform is the sixfold star
corresponding to the triangular lattice of the charge density
with Nc=N.

For 1
rs
2.7, we find different kind of ground states
�see Fig. 2�b��: the support of the Fourier transform �see Fig.
2�d�� is still a sixfold star corresponding to a triangular lat-
tice, but this triangular lattice has a number of sites Nc larger
than N. The system lowers its energy by delocalizing the
electrons on a denser lattice with more sites than electrons
�Fig. 2�. This denser lattice is characterized by integral num-
bers �l� ,m�� different from the WC lattice �l ,m�. For some
system sizes N, the maxima of the Fourier transform corre-
spond to various couples of �l� ,m�� leading to different num-
ber of lattice sites, Nc= l�2+m�2+ l�m�. In any case, the sys-
tem looks like a periodic crystal with an incomplete band in
contrast to the WC solutions of fully occupied bands, studied
in Ref. 8. We refer to this solution as the metallic phase.
However, as rs approaches zero, the energy gain of this me-
tallic crystal compared to the FG gets tinier. At the same
time, Nc is either constant or increases when rs decreases
�apart for a few exceptions�. At rs
1, the FG solution is
stable for our finite system sizes �N�500�.

Now we would like to understand the nature of the Slater
determinants in the metallic phase. A Slater determinant is
obtained as a set of N orthonormal single-particle wave func-
tions �i. Only the space generated by the �i’s is relevant, and
in order to understand the numerical results we need to
choose a canonical representation of the �i’s.

Let ��i�i=1. . .N be a basis corresponding to some indexation
of the plane waves associated to the wave vectors ki of the
Fermi sphere. As rs is small, the space generated by the �’s
becomes close to the space generated by the �’s. Let M be
the square matrix defined by Mij = 
�i �� j� which measures
the overlap of the two Slater determinants. The singular
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FIG. 1. �Color online� Extrapolated energies E�−EFG �milli-
Hartree units� versus rs. Points with error bars: present calculations,
full line �red�: data of Ref. 8, full line �green�: fit to present results
for �rs2.7�, vertical dash line �blue�: rs�2.7.
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FIG. 2. �Color online� Left:

charge density ��r� / 
��−1, with
��r�=i=1

N ��i�r��2. Right: �̃�k�, the
Fourier transform of the charge
density, where �̃�0�=N has been
removed. The grid points are
those compatible with the periodic
conditions. Top: the number of
maxima is Nc=92+52+9�5
=151. Bottom: the number of
maxima is Nc=122+12+12�1
=157. Gray levels corresponds to
the same density in both figures.
Colored lines correspond to L1

= le1+me2, where the numbers
stand for l, m �see text�.

BERNU et al. PHYSICAL REVIEW B 78, 245110 �2008�

245110-2



value decomposition �SVD� of M is M =U�V, where U and
V are unitary matrices and � is a diagonal positive matrix.
Then the orthonormal set ��i��i=1. . .N defined by

�i� = 
k

UVik�k �1�

is a basis of Span���i�� close to the basis ��i�i=1. . .N of
Span���i�� in the sense that 
�i �� j��= �U�UT�ij 	�ij as soon
as �i’s are close to 1. From now on, we assume that the
single-particle wave functions, �i, have been chosen in this
way.

Thus if rs is not too large, �i is close to �i �at least for i
associated to a wave vector not too close to the Fermi sur-
face�, that is, �i�ki� is close to one. Thus, the largest ampli-
tude of �i�k� is for k=ki, and Fig. 3 represents the next
largest amplitude of �i, that we denote bki

, for 499 electrons
at rs=2.7 in two dimension �2D�.

For �ki�	kF, �i has essentially only two nonzero compo-
nents: one at k=ki and the other one bki

at the vector k=ki

+qi, where qi is the vector of the sixfold star of Fig. 2�d�
such that k is close to the Fermi surface. This condition can
only be satisfied for a set of ki closed to a sixfold star as we
see on Fig. 3.

One can understand why metallic states should exist at
small rs in the thermodynamic limit. Let us replace a plane-
wave state k of the FG ��k��kF� by a superposition of two
plane waves with wave vectors k and k+q ��k+q�	kF�.
Choosing q on the sixfold star of a triangular lattice we
certainly obtain a gain in potential energy. The increase of
kinetic energy is minimized if �k��kF and �k+q��kF.
Then, the number of solutions for k is optimal if �q��2kF.
This solution corresponds to a triangular lattice of length
Lc=2� / ��3kF� in real space leading to a unit cell of volume
�c=�3Lc

2 /2. Since the system is contained in the volume
�=�3L2 /2, we will obtain Nc=�c /� lattice sites or

Nc =
2�3

�
N 	 1.1N , �2�

where we have used n=N /�=kF
2 / �4��. We will elaborate

this argument into an analytical proof of an upper bound on
the ground-state energy in Sec. V.

Numerically, it is possible to extend the Hartree-Fock
study for models which differ from the pure electron gas. In
order to check the stability of the metallic phase with respect
to a modification of the singular Coulomb potential, we have
performed calculations using a screened Coulomb potential.
In Fig. 4 we show the ground-state phase diagram for three
different system sizes. We see that for intermediate densities
the metallic state remains the ground state of the finite sized
system even in the presence of screening.

III. DESCENT METHOD

In this section we provide some details about the descent
method used to obtain numerically the HF ground states of
the electron gas. The variation of the total energy
E��1 ,�2 , . . . ,�N� with respect to a variation of the single-
particle state ��i is given by

�E = 
i


h��i���i� + 
i


��i�h��i� , �3�

where h�, the so-called HF Hamiltonian, is a single-particle
operator depending on the full state � �not on the particular
choice of the �i’s�. Extremal states must satisfy the following
equation:
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h��i = 
j

Cij� j , �4�

where Cij are the Lagrange coefficients associated with the
normalization constraint 
�i �� j�=�ij. Conversely, if �
=�1∧ ¯ ∧�N is not an extremum, we have

h��i = 
j

Cij� j + �i, �5�

where the �i’s satisfy 
�i �� j�=0, ∀i , j. Within the steepest-
descent method one chooses first a N�N unitary transforma-
tion A= �aij� such that one obtains


�i��� j�� = �ij, 
�i��� j�� = 0, 
�i��� j�� = ��i�2�ij ∀ i, j

�6�

for the transformed single-particle states �i�= jaij� j, �i�
= jaij� j. The energy E��1+��1 , . . . ,�N+��N� can be ex-
pressed as a sum of rational fractions whose numerators and
denominators are polynomials of order 4 at most: setting
�i

2= ��i�+��i��
2=1+�2��i��

2 and �i=�i�+��i�, we have

E��1 + ��1, . . . ,�N + ��N� = E��1/�1, . . . ,�N/�N�

= 
i

1

�i
2 
�i� − ���i�

+ 
i
j

1

�i
2� j

2 
�i ∧ � j�V��i ∧ � j�

= 
i

Pi
�2�

�i
2 + 

i
j

Pij
�4�

�i
2� j

2 , �7�

where Pi
�2� �respectively, Pij

�4�� are polynomials of order 2
�respectively, 4� in �. Thus, it is possible to find the best �
and to iterate the process until a stationary state is reached.

In fact, this method has the same drawbacks as the steep-
est decent method in linear optimization problems; in gen-
eral, it converges slowly. For linear problems, conjugate gra-
dient methods are preferable.13,14 However, since the HF
states do not form a linear space, the genuine conjugate gra-
dient method does not apply here. We have therefore adapted
a variant of this method to the nonlinear case. Let �i be the
previous variation ��i, and �i is obtained by Eq. �5�. We then
compute E��1+��1+��1 , ¯ ,�n+��N+��N� for six values
of the pairs �� ,�� in order to approximate E by a polynomial
of order 2 in � and �. Minimizing the polynomial with re-
spect to � and �, we obtain the new changes of the single-
particle states, ��i, and the corresponding energy change.
This process is iterated until the relative variation of the en-
ergy, �E /E, is sufficiently small.

We compute the wave function on a Ng�Ng grid, the fast
Fourier transform is used to switch between real and recip-
rocal spaces.15 We have systematically checked the conver-
gence of the solution with respect to the grid size. For the FG
ground state, convergence is reached once all k vectors up to
2kF are represented in the grid �Ng�4�N /��. At larger rs, in
the WC phase, the wave functions are essentially
Gaussians.16 The width � of the Gaussians scales as � /L
� �rsN�−1/2. For a correct resolution of the Gaussians we need
L /Ng��, so that the number of grid points increases at low

densities, Ng� �Nrs�1/2. Convergence is reached for Ng=32
�respectively, 64, 128� for N�43 �respectively, N�200, N
�500� up to rs=30. Whenever the number of grid points is
chosen too small, solutions without any particular symme-
tries are obtained.

We have further studied the influence of the initial state
on the final solution by choosing different types of wave
function for initialization: a WC state, a converged state
stored at larger or lower rs, a state initialized with random
numbers, or a “metallic state” as described above.

Typically, the energies decrease exponentially with the
number of iterations. The decrease in energy during transi-
tions to a different symmetry is in general much smaller than
the convergence within the same symmetry. We have often
seen energy plateaus with changes of relative energy 10−4

just before the occurrence of a transition to a completely
different state. For system sizes up to N=151, the minimiza-
tion is continued until a relative precision of 10−12 is reached,
and for larger N a relative precision of 10−5 is used.

IV. ENERGY OF THE POLARIZED ELECTRON GAS FOR
A SLATER STATE

In this section we set our notations and recall the basic
formulas of the electron gas. We consider the Hamiltonian of
N electrons in a 2D or three-dimensional �3D� square box of
volume � with periodic boundary conditions

H = −
�2

2m
� +

e2

2
V , �8�

where V is the two-body Coulomb potential i�j1 / �ri−rj�,
the electron mass is m, and e is its charge. It is convenient to
choose Hartree as the unit of energy, Ha=�2 / �maB

2�. We get

H =
aB

2

2
�− � +

1

aB
V� . �9�

Let �n be an orthonormalized set of N vectors of L2���.
They define the N-particle Slater determinant �=∧n �n.
Moreover, the energy of � is

E = 
��H��� =
aB

2

2 �− 
n


�n����n�

+
1

aB

n,n�


�n ∧ �n��v��n ∧ �n��� , �10�

where v is defined as


�1 � �2�v��1 � �2� =� dxdy�1�x��2�y�
1

�x − y�
�1�x��2�y� .

�11�

In order to avoid problems due to the Coulomb singularity,
we introduce the jellium model and define the potential act-
ing on the plane waves �k as
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�k � �k��v��k+q � �k�−q� =
�

�
� 2

�q��
D−1

�12�

for q�0 and 0 otherwise, so that the total charge of the
electrons is compensated by a positive background charge.

The Fermi gas is defined by �=∧�k�
kF
�k, where

��DkF�D= �2��DN /� and �D
D is the volume of the unit sphere

EFG = 
��H��� =
aB

2

2 � 
�k�
kF

k2 −
2D−1�

aB�


�k�,�k��
kF

1

�k − k��D−1� .

�13�

As � goes to � with � /N fixed, the thermodynamic limit for
the energy per particle is obtained by the substitution k

→ �

�2��D �dk,

EFG

N
=

aB
2

2

�

N�2��D��
�k�
kF

dkk2

−
1

aB2�D−1�
�k�,�k��
kF

dkdk�
1

�k − k��D−1�
=

aB
2

2

�

N�2��DkF
D+2��

�k�
1
dkk2

−
1

aBkF2�D−1�
�k�,�k��
1

dkdk�
1

�k − k��D−1� . �14�

From the definition of rs= ��DaBn1/D�−1 and kF, it follows
that kF�D

2 rsaB=2�. Thus, we have

EFG

N
=

2�2

�D
D+4rs

2��
�k�
1

dkk2 −
rs�D

2

4�D�
�k�,�k��
1

dkdk�
1

�k − k��D−1� ,

�15�

which gives for D=2 ��2
2=��,

EFG

N
=

2

�rs
2��

�k�
1
dkk2 −

rs

4�
�

�k�,�k��
1
dkdk�

1

�k − k��� .

�16�

V. HARTREE-FOCK UPPER BOUNDS FOR THE
POLARIZED 2D ELECTRON GAS

In this section we estimate the energy for a class of states
inspired by our numerical results. Let us consider a state �
=∧�k�
kF

�k, where

�k = ak�k + bk�k+Qk
, �17�

with Qk in �−2kF�cos p� /3,sin p� /3��p=0. . .5. For k
= �k��cos � , sin �� we choose Qk such that �k+Qk� is minimal;
that is, we choose p as the integer part of �3� /�+1 /2� and
we must assume bk is zero if k is zero or �=� /6+n� /3.

Furthermore, we assume that ak and bk are real positive
number and invariant thru the rotation of 2n� /6 and the
symmetry �→−� �i.e., the dihedral group D6�. The �k’s are
normalized, so that ak

2+bk
2=1 and bk=0 if �k ·Qk�
2kF

2�1

−�� �i.e., bk is not zero only in the vicinity of
�kF�cos p� /3,sin p� /3��p=0. . .5� �see Fig. 5�.

Thus, from Eqs. �10� and �17�, the limit energy per par-
ticle is given by

E
N

=
2

�rs
2��

�k�
1
dk
�k� − ���k�

+
rs

4�
�

�k�,�k��
1
dkdk�

�

2�

�k ∧ �k��v��k ∧ �k��� ,

�18�

where, as in Eq. �16�, the k’s have been renormalized by kF
and thus �Qk�=2.

We define �E by

E − EFG

N
=

2

�rs
2�E . �19�

Then

�E = �
�k�
1

dk�
�k� − ���k� − k2� +
rs

4�
�EV, �20�

where

�EV = �
�k�,�k��
1

dkdk�� �
2�


�k ∧ �k��v��k ∧ �k�� +
1

�k − k��
� .

�21�

A. Potential-energy contribution: �EV

Setting vq=1 / �q�,

�

2�

�k ∧ �k��v��k ∧ �k�� + vk−k� = �vk−k� − vk−k�−Qk�

�bk�
2 ak

2

+ �vk−k� − vk+Qk−k��bk
2ak�

2 + �vk−k� − vk+Qk−Qk�−k��bk
2bk�

2

+ 2vQk
akbkak�bk���Qk+Qk�

+ �Qk−Qk�
�

− 2vk−k�akbkak�bk��Qk−Qk�
− �vk+Qk−k�

+ vk−k�−Qk�
�akak�bkbk��Qk+Qk�

. �22�

kx

ky

S0

S3

S1S2

S4 S5

k
k+Qk

k'

FIG. 5. The circle is the Fermi surface. The shaded surfaces are
the regions where b�k� is nonzero. The new state �k mixing �k and
�k+Qk

is now resonant with �k�.
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Equation �21� may be divided into four parts:
�i� �bk�=0, bk=0�: the contribution is zero.
�ii� �bk�=0, bk�0�, �bk��0, bk=0�: both cases are equiva-

lent.
For �bk�=0, bk�0�, the integrant of Eq. �21� is

�

2�
��k ∧ �k�,v�k ∧ �k�� +

1

�k − k��
= �vk−k� − vk+Qk−k��bk

2.

�23�

Let S0 be the sector of unit disk between −� /6 and � /6
�see Fig. 5�; then in this sector Qk= �−2,0� and by symmetry

�
bk�=0

dkdk��vk−k� − vk+Qk−k��bk
2 = 6�

k�S0,bk�=0
dkdk��vk−k�

− vk+Qk−k��bk
2, �24�

=6�
k�S0,bk�=0

dkdk��vk−k� − vk̃−k��bk
2, �25�

�C�3 + 6�
k�S0,�kx��
1−�

dkdk��vk−k� − vk̃−k��bk
2, �26�

where k̃= �2−kx ,ky�. In S0, k= �kx ,ky� where kx is close to 1
and setting kx=1−x, we assume from now that bk=b�x /��.

In Appendix A, we prove that

�
k�S0,�kx��
1−�

dkdk��vk−k� − vk+Qk−k��bk
2� 8�2�2��ln �−1

+ O�1���
0

1

dxb2�x�x�x . �27�

�iii� �bk��0, bk�0�: By symmetry we can assume that k
belongs to S0. If k��S0�S3 all the v appearing in Eq. �22�
are uniformly bounded. Moreover, since the k volume for
each sector goes like ���, the contribution of these terms is
bounded by C�3. In the same way vk−k� is bounded when k
�S3 and vk+Qk−k� is bounded when k��S0. Thus setting

f ª ak
2bk�

2 + bk
2ak�

2 − 2akak�bkbk� = �akbk� − bkak��
2, �28�

g ª ak
2bk�

2 + bk
2ak�

2 + 2akak�bkbk� = �akbk� + bkak��
2, �29�

one can check that

�
bk,bk��0

�

2�

�k ∧ �k��v��k ∧ �k�� + vk−k�� C�3

+ 6�
k,k��S0

dkdk��vk−k�f − vk+Qk+k�g� . �30�

In Appendix B we prove that

�
k,k��S0

dkdk��vk−k�f − vk+Qk+k�g�� 4�2�2��ln �−1

+ O�1���
0

1

dx�x�
x

1

dx��f��x,�x�� − g��x,�x��� .

�31�

Thus, summing the four contributions gives

�EV� C�3 + 6�2�2��ln �−1 + O�1���
0

1

dx�x�16b2�x�x

+ 4�
x

1

dx��f�x,x�� − g�x,x���� . �32�

B. Kinetic-energy contribution

The variation of the kinetic energy is given by

�
�k�
1

dk�
�k� − ���k� − k2� = 6�
k�S0

dk�
�k� − ���k� − k2� ,

�33�

=6�
0

�

dx 2ym 4xb2�x/�� , �34�

�6� 8�2�2��
0

1

dx�xxb2�x� . �35�

C. Total energy

Inserting Eqs. �32� and �35� in Eq. �20�, the variation of
the total energy from the Fermi-gas energy becomes

�E� 6�2�2��
0

1

dx�x�8xb2�x� +
rs

4�
�ln �−1 + O�1��

��16b2�x�x + 4�
x

1

dx��f�x,x�� − g�x,x����� = 6

� 8�2�2��
0

1

dx�x�xb2�x� +
rs

2�
�ln �−1 + O�1��

��b2�x�x − a�x�b�x��
x

1

dx��a�x��b�x����� . �36�

Let us set

� = �2�� , �37�

I1 = �
0

1

dx�xxb2�x� , �38�

I2 =
1

5�
�

0

1

dx�x�− b2�x�x + a�x�b�x��
x

1

dx�a�x��b�x��� .

�39�

Then
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�E� 6� 8�2��I1 − rsI2�ln �−1 + O�1��� . �40�

If I2	0, as rs goes to 0, �E is minimal in Eq. �40� for �
defined by

�min =
1

e
exp�−

I1

I2rs
� , �41�

and finally inserting �min in Eq. �40� gives

�E −
6� 8�2

e
exp�−

I1

I2rs
�rsI2. �42�

We now have to find a solution b�x� such that I2 is positive.
Choosing b�x�=b0 or b�x�=b0�1−x� leads to negative I2. In
Appendix C, as rs goes to 0 we find a family of b leading to

�E − rs exp�−
5�

3rs
+

O�1�
�rs

� . �43�

Though such a bound is correct in the thermodynamic limit
for rs→0, this behavior in not so relevant for finite systems.
Our numerical calculations of Sec. II consider about 103

electrons where the uniform Fermi gas remains the ground
state for rs1. Thus the asymptotic bound �43� is not very
helpful in comparing with our numerical results obtained for
rs	1.

Nevertheless, for finite rs, one can choose a suitable func-
tion b and evaluate numerically I1 and I2. For instance, with
b=b� as in Eq. �C10� and �=0.001 we get

E − EFG

N
 − 2.� 10−4rs

−1 exp�−
18.5

rs
� . �44�

We can also understand why the metallic phase does not
necessarily appear in small sized systems. For finite systems
of N electrons, one must have at least one plane wave in the
shaded region of Fig. 5: �k ·Qk�	2kF

2�1−��. This gives the
condition N���	1 and using Eqs. �37� and �41�, this leads
N	 exp�3I1 /5I2rs�. Analogous to Eq. �43�, we obtain the
following lower bound:

N	 exp�3�

rs
� , �45�

i.e., N	500 for rs=1.8. This bound is compatible with our
numerical simulations where the metallic phase disappears at
rs=1 for N=500 and may explain why the metallic phase has
not been observed in previous numerical calculations.

VI. CONCLUSION

Using a descent algorithm, we have computed the ground
state of up to N=500 electrons. For 1rs3, our solutions
have lower energies than the FG or WC. These solutions
correspond to denser lattices that the WC solutions, that is,
with less than one electron per site as in a metallic material.

We have proven, in the thermodynamic limit, that for suf-
ficiently small rs, these metallic states have always a smaller
energy than the Fermi gas. We have demonstrated that the
FG is not the ground state even at small rs.

Our proof relies on the behavior at infinity of the Cou-
lomb potential, so it may be interesting to check the exis-

tence of these states in the case of a screened Coulomb po-
tential. A rigorous extension of our proof is not
straightforward. However, as shown in Fig. 4, our numerical
calculations indicate that the metallic phase persists in the
presence of screening, at least for various system sizes and
screening parameters studied. Thus, such metallic states
should be considered as relevant candidates for further stud-
ies beyond the Hartree-Fock approximation, since, qualita-
tively, correlation effects amount to an effective screening of
the electron interaction in the high-density limit.
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APPENDIX A

We have to estimate

I�f� = ��k�,�k���1

1−kx
�,�kx��
1−�

dkdk��vk−k� − vk̃−k��f�1 − kx� ,

�A1�

where k̃= �2−kx ,ky� and f is a positive function. We have

� dk��vk−k� − vk̃−k�� =� dkx� arcsinh
ym� − ky

kx − kx�

+ arcsinh
ym� + ky

kx − kx�
− arcsinh

ym� − ky

2 − kx − kx�

− arcsinh
ym� + ky

2 − kx − kx�
, �A2�

where ym� =�1−kx�
2. Moreover, since arcsinh x−arcsinh y

� ln x /y for x	y	0,

� dk��vk−k� − vk̃−k��� �
−1+�

1−�

dkx�2 ln
2 − kx − kx�

kx − kx�
. �A3�

We set kx=1−x and ym=�2x−x2,

I�f�� �
0

�

dxf�x�2ym�
−1+�

1−�

dkx�2 ln
1 + x − kx�

1 − x − kx�
, �A4�

=4�
0

�

dxf�x�ym�
�

2−�

du ln
u + x

u − x
, �A5�

�4�
0

�

dxf�x�ym�
�

2−�

du
2x

u − x
, �A6�

=8�2�2��ln �−1 + O�1���
0

1

dxf��x�x�x . �A7�
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APPENDIX B

We have to estimate

I�f ,g� = ��k�,�k���1

1−kx,1−kx�
�

dkdk��vk−k�f − vk̃+k�g� , �B1�

where k̃= �kx−2,ky� and f and g are positive functions of 1
−kx and 1−kx�. Setting kx=1−x, kx�=1−x�, ky =y, ky�=y�, and
r�=��x�x��2+ �y−y��2, Eq. �B1� can be rewritten as

I�f ,g� = �
0

�

dx�
0

�

dx�� dydy�� 1

r−
f −

1

r+
g�

= 2�
0

�

dx�
x

�

dx�� dydy�� 1

r−
f −

1

r+
g� , �B2�

where y and y� must satisfy �1−x�2+y2�1 and �1−x��2

+y�2�1.
Since arcsinh x� ln 2�x+1�, the first term in Eq. �B2� is

bounded by

2�
0

�

dx�
x

�

dx�� dydy�
1

r−
f = 2�

0

�

dx�
x

�

dx�f�
−ym

ym

dy

��arcsinh
ym� + y

x� − x

+ arcsinh
ym� − y

x� − x
� , �B3�

�2�
0

�

dx�
x

�

dx�f�
−ym

ym

dy2arcsinh
2ym�

x� − x
, �B4�

�4�
0

�

dx�
x

�

dx�f2ym ln�2 +
4ym�

x� − x
� , �B5�

�4�2�2��ln��−1� + O�1���
0

1

dx�
x

1

dxf��x,�x���x .

�B6�

On the other hand, using arcsinh x� ln 2x, the last term of
Eq. �B2� is

2�
0

�

dx�
x

�

dx�g� dydy�
1

r+
= 2�

0

�

dx�
x

�

dx�g�
−ym

ym

dy

�arcsinh
ym� − y

x + x�

+ arcsinh
ym� + y

x + x�
, �B7�

�2�
0

�

dx�
x

�

dx�g�
−ym

ym

dy ln 4
ym�

2 − y2

�x + x��2 , �B8�

�4�
0

�

dx�
x

�

dx�gym�ln �−1 + O�1�� , �B9�

�4�2�2��ln �−1 + O�1���
0

1

dx�
x

1

dx�g��x,�x���x .

�B10�

Moreover, we have

I�f ,g�� 4�2�2��ln �−1 + O�1���
0

1

dx�x�
x

1

dx��f��x,�x��

− g��x,�x��� . �B11�

APPENDIX C

Here we provide exact bounds on I1 and I2 given by Eqs.
�38� and �39�. In order to estimate I2 we introduce the linear
operator A,

Af�x� =
1

2x
�

x

1

f�y�dy +
1

2x�x
�

0

x

f�y��ydy , �C1�

defined on the Hilbert space of the functions on �0,1� with
the scalar product


f �g� = �
0

1

x�xf�x�g�x�dx . �C2�

Then A is a bounded symmetric operator and

I2/I1 =
1

5�
� 
ab�Aab�

�b�2 − 1� . �C3�

The unitary operator f�x�→g�y�= f�e−y�e−5/4y from
L2��0,1� ,x�xdx� onto L2��0, +�� ,dx� maps the operator A

onto the operator Ã,

Ãg�x� =
e−x/4

2
�

0

x

ey/4g�y�dy +
ex/4

2
�

x

+�

e−y/4g�y�dy .

�C4�

Then

Ãeikx =
1

4�1/16 + k2�
eikx −

1

1/2 + i2k
e−x/4, �C5�

thus setting

gk�x� =
1

�1 + i4k�
��1 + i4k�eikx − �1 − i4k�e−ikx� . �C6�

�gk�k	0 is a full set of pseudoeigenvectors satisfying

Ãgk =
1

4�1/16 + k2�
gk.

Thus the spectrum of Ã is �0,4� and the spectral measure is
purely absolutely continuous; the largest spectral value is 4
with a pseudoeigenvector g4�x�=x+4 corresponding to
f4�x�=x−5/4�4−ln x�. But �f4� is infinite and f4 diverges at 0.
The next step is to choose a family of functions b� such that
a�=�1−b� is defined and 
a�b� �Aa�b�� / �b��2 is close to 4.
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Thus setting f��x�=min�f4�x� , f4���� for 0
� 1, we
have

�f��2 = −
1

3
�ln3 � −

66

5
ln2 � + O�ln ��� , �C7�


f��Af�� = −
4

3
�ln3 � −

41

5
ln2 � + O�ln ��� , �C8�

Then


f��Af��
�f��2 = 4 −

20

�ln ��
+ O�ln−2 �� . �C9�

Thus f� is a good candidate for the linear part of the prob-
lem. Now, by the simple scaling

b��x� =
f��x�

�2f����
, �C10�

we get the nonlinear candidate satisfying b��x��1 /�2, a�
=�1−b�

2 is well defined, a��x��1 /�2, and b� satisfies Eq.
�C9�.

We must now estimate the simultaneous convergence of
I2 / I1 �Eq. �C3�� and I2 as � decreases. We have


b��Ab�� − 
b�a��Ab�a�� = − 
b� − b�a��A�b� − b�a�� + 2
b� − b�a��A�b��� 2
b� − b�a��A�b��

= 8
b� − b�a��b�� + 2
b� − b�a���A − 4�b��� 8
b� − b�a��b��

+ 2�b� − b�a����A − 4�b��� 8
b� − b�a��b�� + 8�b� − b�a���
b���A − 4�b�� ,

where


b� − b�a��b�� = �
0

1

b��x�2�1 − a��x��x�xdx

� �
0

1

b��x�2�1 − a��x��2x�xdx sup
1

1 − a�

� �b� − b�a��2
�2

�2 − 1
,

and since b�−b�a�	0,

�b� − b�a��2 = �b��2 − �b�a��2 − 2
b� − b�a��b�a��

� �b��2 − �b�a��2 = �b�
2�2.

By a direct computation,

�b�
2�2� �b��2 6

5�ln ��

for � small enough and thus


b��Ab��
�b��2 −


b�a��Ab�a��
�b��2 �

8

�ln ��� �2
�2 − 1

6

5
+ 2�6� .

�C11�

Finally, from Eq. �C9� for b� and Eq. �C11� and I1= �b��2,
Eq. �C3� gives

I2/I1�
1

5�
�3 −

C

�ln ��� + O�ln−2 �� , �C12�

I2�
2

15�
�5/2�ln3 ���1 + O� 1

�ln ���� , �C13�

where

C = 20 + 8� �2
�2 − 1

6

5
+ 2�6� 	 92. �C14�

Choosing � sufficiently small, this proves that �E is strictly
negative for any rs	0; furthermore choosing � to minimize
�E �Eq. �42��, i.e., 9rs�ln ��2=2C�, we obtain as rs goes to
0:

�E − rs exp�−
5�

3rs
+

O�1�
�rs

� . �C15�

1 B. Tanatar and D. M. Ceperley, Phys. Rev. B 39, 5005 �1989�;
C. Attaccalite, S. Moroni, P. Gori-Giorgi, and G. B. Bachelet,
Phys. Rev. Lett. 88, 256601 �2002�.

2 B. Bernu, L. Cândido, and D. M. Ceperley, Phys. Rev. Lett. 86,

870 �2001�.
3 H. Falakshahi and X. Waintal, Phys. Rev. Lett., 94, 046801

�2005�; X. Waintal, Phys. Rev. B 73, 075417 �2006�.
4 E. P. Wigner, Trans. Faraday Soc. 34, 678 �1938�; Phys. Rev.

METAL-INSULATOR TRANSITION IN THE HARTREE-… PHYSICAL REVIEW B 78, 245110 �2008�

245110-9



46, 1002 �1934�.
5 A. W. Overhauser, Phys. Rev. Lett. 4, 462 �1960�; Phys. Rev.

128, 1437 �1962�.
6 B. Spivak and S. A. Kivelson, Phys. Rev. B 70, 155114 �2004�.
7 G. F. Giuliani and G. Vignale, Quantum Theory of the Electron

Liquid �Cambridge University Press, Cambridge, 2005�.
8 J. R. Trail, M. D. Towler, and R. J. Needs, Phys. Rev. B 68,

045107 �2003�.
9 S. Zhang and D. M. Ceperley, Phys. Rev. Lett. 100, 236404

�2008�.
10 S. V. Kravchenko, G. V. Kravchenko, J. E. Furneaux, V. M.

Pudalov, and M. D’Iorio, Phys. Rev. B 50, 8039 �1994�.

11 S. Pankov and V. Dobrosavljević, Phys. Rev. B 77, 085104
�2008�; Physica B 403, 1440 �2008�.

12 A. Camjayi, K. Haule, V. Dobrosavljević, and G. Kotliar, Nat.
Phys. �unpublished�.

13 G. H. Golub and C. Van Loan, Matrix Computations, 2nd ed.
�Johns Hopkins University Press, Baltimore, Maryland, 1989�.

14 F. Delyon and M. Duneau, J. Comput. Phys. 207, 375 �2005�.
15 In reciprocal space, the k vectors of the WC fall on the grid.
16 Indeed, a simple variational calculation with only one parameter,

the width of the Gaussians, gives the HF energy with a relative
precision better than 0.1%.

BERNU et al. PHYSICAL REVIEW B 78, 245110 �2008�

245110-10


